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Introduction

Lecture notes for a minicourse at “Noncommutative geometry and index theory for group
actions and singular spaces”, May 21 – May 25, 2018, at Texas A & M.

References for these lecture notes:
Some of the results discussed below are classical and well-known and some are work I’ve done
with my collaborators. The discussion below of the de Rham operator and the signature
of stratified spaces refers to work done in the papers [5, 6]. We also studied the relation to
topologically defined cohomologies in [2], application to the Novikov conjecture in [7], and
to mapping surgery to analysis in [8]. All but the last of these are covered in my survey
paper [1]. The discussion below of Dirac-type operators and an index formula refers to work
done in [3, 4].

These papers build on the seminal work of Cheeger [13–16]. Analysis on spaces with conical
singularities dates back to Kondratev [21] and the approach below dates back to [26,28]; we
follow, e.g., [18, 22, 24, 27]. The index formula for spaces with isolated conical singularities
is well-known, see e.g., [17, 23]. For non-isolated conic singularities, see e.g., [9, 12]. The
general case of a stratified space is treated in [3].

1. First lecture: Conical singularities

1.1. Domains. When studying an elliptic operator on space with singularities, one of the
first things to grapple with is the choice of domain. On a closed (or even complete) manifold
every elliptic differential operator has a unique extension from smooth functions to a closed1

operator on square-integrable functions.2 This can fail once the manifold is not complete,
and different choices will yield different indices (if they are even Fredholm).

Consider the Laplacian on the unit disk. It’s well-known that every continuous function on
the sphere has a harmonic extension into the disk. Thus the null space of the Laplacian on
its largest possible domain will be infinite dimensional. On the other hand if we consider the
Laplacian on a domain with vanishing boundary values, the maximum principle guarantees
that there will not be any null space.

1.2. I-smooth functions and the Mellin transform. Given a function f defined on the
positive real axis R+

s , its Mellin transform is the function M(f)(ζ) defined on the complex
plane by the relation

M(f)(ζ) =

∫ ∞
0

f(s)sζ
ds

s
.

1A closed operator between two topological vector spaces is one whose graph is closed.
2This is known as Gaffney’s theorem.

1
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This transform is the analogue for the multiplicative group of positive real numbers3 of the
Fourier transform, to which it is related by a simple change of variables. Typically, the
Mellin transform of f is defined for complex numbers ζ = ξ + iη restricted to be in a strip
{a < ξ < b} (known as the fundamental strip of f), and often extends as a meromorphic
function on some larger strip.

For example, the Mellin transform of e−s is

M(e−s)(ζ) =

∫ ∞
0

e−ssζ
ds

s
= Γ(ζ),

the Gamma function. Since e−s is bounded and decays exponentially at infinity, it is easy
to see4 that is a holomorphic function for Re(ζ) > 0. On the other hand, the exponential
function satisfies

e−s ∼
∑
k≥0

(−s)k

k!
as s→ 0

and so, for any N ∈ N we have

Γ(ζ) =

∫ ∞
1

e−ssζ
ds

s
+

∫ 1

0

(
e−s −

∑
0≤k<N

(−s)k

k!

)
sζ
ds

s
+

∫ 1

0

( ∑
0≤k<N

(−s)k

k!

)
sζ
ds

s

The first term is holomorphic on the entire complex plane, the second term is O(sN) as
s → 0 and hence holomorphic on the half-plane {Re ζ > −N}, and the last term can be
explicitly integrated ∑

0≤k<N

(−1)k

k!

1

k + ζ

and recognized as meromorphic on the entire complex plane, with simple poles at ζ ∈
{0,−1,−2, . . . ,−N + 1}. Since N was arbitrary we see that Γ(ζ) is a meromorphic function
on C with simple poles at −N0.

The same computation would have worked starting at any function f ∈ C∞([0,∞)) with
exponential decay near infinity. That is, if f has Taylor expansion

f(s) ∼
∑
k≥0

aks
k

around s = 0, then the Mellin transform of f,M(f)(ζ), is holomorphic on {Re ζ > min{k :
ak 6= 0}} and extends meromorphically to the complex plane with at worst simple poles at
−N0 where it satisfies

M(f)(ζ) =
ak

k + ζ
+O(1) near − k ∈ C.

This connection between the asymptotic expansion of a function at zero5 and the pole
structure of its Mellin transform is one of the reasons why the Mellin transform is so useful.

3 Note, for example, that the measure ds
s is invariant under dilations s 7→ as, a > 0.

4For example, by Morera’s theorem we just need to check that it integrates to zero along the boundary
of triangles in this region and this follows from Fubini’s theorem.

5There is an analogous story involving asymptotic expansions at infinity. One can repeat the argument
above or just note that if φ(s) = f( 1

s ) then M(φ)(ζ) =M(f)(−ζ).



AN INTRODUCTION TO INDEX THEORY ON SINGULAR SPACES 3

Importantly for us, the same thing works for more generally for “I-smooth functions” (also
known as polyhomogeneous functions). Here I is an index set, meaning

I ⊆ C× N0 such that, for any N ∈ N, |{(ν, p) ∈ I : Re(ν) < N}| <∞,
and we say that a smooth function f on (0,∞) is I-smooth on [0,∞) if it satisfies6

f(s) ∼
∑

(ν,p)∈I

a(ν,p)s
ν(log s)p as s→ 0

for some set of coefficients a(ν,p) independent of s. 7 As we have, whenever Re(ν + ζ) > 0,∫ 1

0

a(ν,p)s
ν+ζ(log s)p

ds

s
= a(ν,p)

(
∂

∂ζ

)p ∫ 1

0

sν+ζ ds

s
= a(ν,p)

(−1)pp!

(ν + ζ)p
,

we see that the Mellin transform M(f)(ζ) of an I-smooth function f that decays exponen-
tially at infinity is holomorphic on the half-plane {Re ζ > −min{Re ν : ∃(ν, p) ∈ I}} and
extends meromorphically to the complex plane with poles at places and sizes determined
by I. In fact we see that the asymptotic expansion at s = 0 and the singular parts of the
meromorphically continued Mellin transform mutually determine each other.

Let us point out some more properties of the Mellin transform that can easily be reduced
to standard properties of the Fourier transform by changing variables. First, it has an inverse
given by

M−1(F )(s) =
1

2πi

∫ ∞
−∞

F (ξ + iη)s−η dη;

specifically, if F is holomorphic on the set {ξ − ε < Re ζ < ξ + ε} and satisfies |F (ξ + iη)| =
O(|η|−2) then M−1(F ) is a continuous function on (0,∞) and its Mellin transform is F.
Note that changing the vertical line over which we integrate will generally yield a different
inverse.

Secondly, the Mellin transform is an isometry on L2,

M : L2(R+; ds
s

) −→ L2({ξ = 0}; dη),

and more generally,
M : saL2(R+; ds

s
) −→ L2({ξ = a}; dη).

Note that saL2(R+; ds
s

) ⊆ sa
′
L2(R+; ds

s
) whenever a > a′, so the image of saL2(R+; ds

s
) under

the Mellin transform is

L2({ξ = a}; dη) ∩ Hol({ξ + iη : ξ < a}).
Finally, the Mellin transform intertwines differentiation by s∂s and multiplication by −ζ,

M((s∂s)f)(ζ) =

∫ ∞
0

sζ(s∂s)f(s) ds
s

= −ζ
∫ ∞

0

sζ−1f(s) ds = −ζM(f)(ζ).

6Recall that the meaning of an asymptotic expansion like this is that for any N, ` ∈ N,∣∣∣f(s)−
∑

Re ζk<N,p<`
aνks

νk

∣∣∣ is bounded for s near 0 by a constant times the smallest sν(log s)p with

(ν, p) ∈ I not included in the sum.
7An index set is smooth if it also satisfies (ζ+1, p) ∈ I whenever (ζ, p) ∈ I. With this condition, I-smooth

functions are a module over the smooth function on [0,∞), i.e., If f is a smooth function on [0,∞) and h is
an I-smooth function then fh is an I-smooth function. It is also convenient to require whenever (ζ, p) ∈ I
that we also have (ζ, p′) ∈ I for all 0 ≤ p′ ≤ p.
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1.3. Conic singularities. Let’s start by thinking about the simplest singular spaces: a

space X̂ with an isolated conic singularity at x0. This means that, near x0, X̂ looks like
C(Z) = Z × [0, 1)/(z, 0) ∼ (z′, 0). If we remove such a neighborhood, we end up with a

smooth manifold X̃ with boundary Z. The boundary comes with a map φ : Z −→ {x0},
which is a very simple map, but we will keep it as part of the structure as it reminds us that

X̃ came from X̂.
Let’s give ourselves a simple conic metric8 on X̃, one that near the boundary has the form

dx2 + x2gZ for a fixed metric gZ on Z. Here x is a ‘boundary defining function’, meaning a

smooth non-negative function that vanishes only on ∂X̃ and then to exactly first order, i.e.,

x ∈ C∞(X̃;R+), ∂X̃ = {x = 0}, dx has no zeros on X̃.

Let’s study the most natural differential operator involving the Riemannian metric, the
Laplacian ∆. In local coordinates we have

∆ = −gij(∂i∂j − Γkij∂k)

and a short computation near the boundary shows that this takes the form

−∂2
x −

v

x
∂x +

1

x2
∆Z , v = dimZ

Since the coefficients are blowing-up at the boundary of X̃, one natural domain for ∆

consists of smooth functions that are compactly supported in the interior of X̃. By duality,
we could also define ∆ distributionally. For many purposes, including ours, it is useful to

work with ∆ as an unbounded operator on square-integrable functions, L2(X̃). There are two
natural domains for ∆ as a closed9 operator on L2, one is the graph closure of the smooth
functions of compact support and is known as the minimal domain,

Dmin(∆) = graph closure of C∞c (X̃◦)

=
{
u ∈ L2(X̃) : ∃(un) ⊆ C∞c (X̃◦) s.t. un

L2

−−−→ u and (∆un) is L2-Cauchy
}
,

the other is the restriction of ∆ as an operator on distributions and is known as the maximal
domain,

Dmax(∆) = {u ∈ L2(X̃) : ∆u ∈ L2(X̃)}.
Any closed extension (∆,D(∆)) of ∆ from C∞c (X̃◦) satisfies

Dmin(∆) ⊆ D(∆) ⊆ Dmax(∆).

By elliptic regularity we know that, away from the boundary, elements of Dmin(∆) or

Dmax(∆) are precisely those in the second Sobolev space H2(X̃◦). The issue is to understand
the behavior of these elements at the boundary. Indeed we will show that a choice of domain
is essentially a choice of boundary conditions, but to do that we need to find what the
appropriate boundary data is. Writing

∆ = x−2(−(x∂x)
2 − (v + 1)x∂x + ∆Z)

and recognizing the dilation invariance of x∂x suggests the relevance of the Mellin transform.

8A general conic metric would be one that in a collar neighborhood has the form dx2 + x2hx where hx is
a family of two tensors that restricts to a metric on each level set of x.

9An operator is closed if its graph is closed.
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More completely, we recognize that x2∆ is an elliptic polynomial in the vector fields x∂x,
∂zi (zi coordinates along Z) from

(1.1) Vb = {V ∈ C∞(X̃;TX̃) : V is tangent to ∂X̃}.
We say that x2∆ is an elliptic second order b-differential operator.10 There is a very well-
developed theory of b-differential and pseudo-differential operators, for the moment we simply
note some of the simpler features of this theory, analogous to well-known properties on closed
manifolds. There is natural notion of b-Sobolev spaces

Hk
b (X̃; dvolg) = {u ∈ L2(X̃; dvolg) : V1 · · ·Vku ∈ L2(X̃; dvolg) for any Vi ∈ Vb}

and b-differential operators define bounded operators between appropriate ones, e.g.,

x2∆ : H2
b (X̃; dvolg) −→ L2(X̃; dvolg).

In particular the domains of ∆ satisfy

x2H2
b (X̃; dvolg) ⊆ Dmin(∆) ⊆ Dmax(∆) ⊆ H2

b (X̃; dvolg).

Significantly though, the inclusions Hs
b (X̃; dvolg) ↪→ L2(X̃; dvolg), s > 0, are not compact; in

addition to the improved regularity, compactness requires decay at the boundary so instead
we have that

xδHs
b (X̃; dvolg) ↪→ L2(X̃; dvolg)

is compact for any δ, s > 0.
To simplify the numerics, let us arrange to work with the measure dx

x
. Notice that near

the boundary we have

L2([0, 1)x × Z; dvolg) = L2([0, 1)x × Z;xv dx dvolZ) = x−(1+v)/2L2([0, 1)x × Z; dx
x

dvolZ)

and, since multiplication by x(1+v)/2 is an isometry, that studying ∆ on L2([0, 1)x×Z; dvolg)
is equivalent to studying the operator P = x(1+v)/2∆x−(1+v)/2 on L2([0, 1)x × Z; dx

x
dvolZ),

L2([0, 1)x × Z; dvolg)

x(1+v)/2

��

∆ // L2([0, 1)x × Z; dvolg)

x(1+v)/2

��

L2([0, 1)x × Z; dx
x

dvolZ)
P // L2([0, 1)x × Z; dx

x
dvolZ)

The operator P is given by

x(1+v)/2∆x−(1+v)/2 = x−2(−(x∂x)
2 + ∆Z + (1 + v)2/4).

Multiplication by x(1+v)/2 mediates between the closed domains of P and those of ∆.
If u ∈ Dmax(P ), then

v = x2Pu = (−(x∂x)
2 + ∆Z + (1 + v)2/4)u ∈ x2L2([0, 1)x × Z; dx

x
dvolZ).

Hence, taking Mellin transform with respect to x, we have

M(u)(ζ) ∈ L2({ξ = 0)} × Z; dη dvolZ) ∩ Hol({ξ + iη : ξ < 0}),
M(v)(ζ) ∈ L2({ξ = 2} × Z; dη dvolZ) ∩ Hol({ξ + iη : ξ < 2})

10Here b stands for boundary. A full development of the b-calculus of pseudodifferential operators can be
found in [27].
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and so

M(v)(ζ, z) = (−ζ2 + ∆Z + (1 + v)2/4)M(u)(ζ, z)

=⇒ M(u)(ζ, z) = (∆Z − ζ2 + (1 + v)2/4)−1M(v)(ζ, z)

is as a meromorphic continuation of M(u) to a larger half-plane. The poles of M(u) occur
at those ζ for which ζ2 ∈ Spec(∆Z + (1 + v)2/4), with real part in (0, 2). This is a finite set,
say {λ1, . . . , λN}, and taking inverse Mellin transform we find that11

u =
N∑
j=1

uj(z)xλj + ũ, with ũ ∈ x2−L2(X̃; dx
x

dvolZ) ∩ Dmax(P ).

with uj an eigenfunction of ∆Z with eigenvalue λj.
This shows that elements of the maximal domain have asymptotic expansions. It also

shows that elements of the maximal domain are always in xεH2
b (X̃; dx

x
dvolZ) for some fixed

positive ε (indeed, any ε < minλj). If u is in the minimal domain then uj = 0 for all j since
these coefficients are continuous with respect to the graph norm and clearly vanish for com-

pactly supported functions. Thus the minimal domain is contained in x2−H2
b (X̃; dx

x
dvolZ).

In particular note that Dmax(P ) ↪→ L2(X̃; dx
x

dvolZ) is compact so (P,Dmax(P )) has closed
range and finite dimensional null space. The adjoint of (P,Dmax(P )) is (P,Dmin(P )) which
also has finite dimensional null space (in fact is injective by the maximum principle), and
so (P,Dmax(P )) is Fredholm. It follows that all closed extensions of P (and hence of ∆) are
Fredholm.

We can identify the minimal domain. So far we know that

x2H2
b (X̃; dx

x
dvolZ) ⊆ Dmin(P ) ⊆ x2−H2

b (X̃; dx
x

dvolZ).

To see that
Dmin(P ) = Dmax(P ) ∩ x2−H2

b (X̃; dx
x

dvolZ)

let u ∈ Dmax(P ) ∩ x2−H2
b (X̃; dx

x
dvolZ) so that un = x1/nu ∈ Dmin(P ) for all n. Let ε > 0 be

small enough so that Dmax(P ) ⊆ xεH2
b (X̃; dx

x
dvolZ) and note that for any v ∈ Dmax(P ) we

have
〈Pun, v〉L2 = 〈xεPun, x−εv〉L2 → 〈xεPu, x−εv〉L2 = 〈Pu, v〉L2

and 〈un, Pv〉L2 → 〈u, Pv〉L2 . It follows that un converges to u in the graph norm of P and
hence u ∈ Dmin(P ).

Thus elements of the minimal domain are precisely those elements of the maximal domain
whose asymptotic expansion above has uj = 0 for all j. We have identified

Dmax(P )/Dmin(P ) ∼=
⊕

Eλj(∆Z).

Moreover, it is easy to see that the for any closed domain D(P ), the inclusion i : Dmin(P ) ↪→
D(P ) is Fredholm with index − dimD(P )/Dmin(P ) (essentially by the rank-nullity theorem).
It follows that

Dmin(P ) ⊆ D(P ) ⊆ Dmax(P ) =⇒ ind(P,D(P )) = ind(P,Dmin(P ))− dimD(P )/Dmin(P ).

11The notation x2−L2 stands for ∩ε>0x
2−εL2. This arises because we can take inverse Mellin trans-

form along any line {Re ζ = 2 − ε}, but we may note be able to take inverse Mellin transform along
{Re ζ = 2} because M(u) could have poles on this line. If there are no poles on this line we may take

ũ ∈ x2L2(X̃; dxx dvolZ) ∩ Dmax(∆).
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It’s worth emphasizing that the analysis above worked because x2∆ is an elliptic b-differential
operator. In general, a ‘conic differential operator of degree k’ is a differential operator D
such that xkD is a b-differential operator of degree k. If this is elliptic as a b-operator then
the analysis above works mutatis mutandis.

We should also point out that the situation was simplified by assuming that the metric
had exactly the form dx2 +x2gZ near the boundary. This is known as a ‘product-type’ conic
metric and it is especially simple as it allows separation of variables near the boundary. The
analysis above works for general conic metrics of the form dx2 +x2hx, but the computations
are a bit messier. In particular the asymptotic expansion of elements in the maximal domain
of a second order elliptic operator will generally have log terms12

For the scalar Laplacian, note that the expansion above involved eigenvalues of ∆Z + (v+
1)2/4 in the interval (0, 2). If v ≥ 2 then there are no eigenvalues in this interval and so the
discussion above shows that the scalar Laplacian is essentially self-adjoint.

Next time we will consider d+δ we will have to examine the geometry of differential forms
before we get a conic differential operator of order one, but then our tools from today will
apply.

2. Second lecture: De Rham operator

2.1. The de Rham operator on spaces with conic singularities. Last time we were
able to understand the closed extensions of the Laplacian of a conic metric by using the
Mellin transform. The same procedure will work for more other operators that are natural

with respect to the metric, but only once the geometry is adapted. Analysis on X̂ is carried

out on X̂ \ {p} which is diffeomorphic to X̃. We can also think of X̃ as the space on which

we can study the differential geometry of X̂.

As a simple example, what should be meant by a smooth function on X̂ given that this is
not a smooth space? Let

C∞Φ (X̃) = {f ∈ C∞(X̃) : i∗
∂X̃
f is a constant}.

These are precisely those smooth functions on X̃ that descend to continuous functions on

X̂; they are a natural choice of smooth functions on X̂.
If these are our smooth functions, then the cotangent bundle should be the space spanned

locally by their differentials,

V∗w = {ω ∈ C∞(X̃;T ∗X̃) : i∗
∂X̃
ω = 0} = 〈dx, xdz〉.

Using the Serre-Swan theorem, or directly, we can show that there is a vector bundle wT ∗X̃
which we will call the wedge cotangent bundle, together with a bundle map

j : wT ∗X̃ −→ T ∗X̃

such that j∗C∞(X̃; wT ∗X̃) = V∗w ⊆ C∞(X̃;T ∗X̃). Informally we say that the space of sections

of wT ∗X̃ is the set V∗w.
Similarly, instead of studying d + δ on differential forms we should study it on the space

of wedge differential forms,

wΩ∗(X̃) = C∞(X̃; Λ∗(wT ∗X̃)).

12See the discussion in [24, §7] or [6, Lemma 3.2].
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To see how this makes a difference, note that near the boundary, with respect to the natural
splitting 13

Ωq(X̃) = Ωq(∂X̃)⊕ dx ∧ Ωq−1(∂X̃),

the operator d+ δ is given by the two-by-two matrix,

d+ δ =

(
dZ + 1

x2
δZ − 1

x
(v + 1− 2q)− ∂x

∂x −dZ − 1
x2
δZ

)
.

However if we use wedge differential forms then this splitting takes the form

wΩq(X̃) = xqΩq(∂X̃)⊕ dx ∧ xq−1Ωq−1(∂X̃)

and correspondingly we have

d+ δ =

(
1
x
(dZ + δZ) − (v−q)

x
− ∂x

q
x

+ ∂x − 1
x
(dZ + δZ)

)
.

Let us emphasize two advantages of this expression. First the link Z only enters through
its de Rham operator, dZ + δZ , which lends itself to inductive arguments. Secondly, if we
multiply by x, this has the form(

dZ + δZ −(v − q)− x∂x
q + x∂x −(dZ + δZ)

)
which is a b-differential operator.

We may now argue exactly as we did in the first lecture and determine all possible closed
extensions of d+ δ. What we find is that

Dmax(d+ δ)/Dmin(d+ δ) =
⊕

−1
2
<λ<

1
2

Eλ

((
dZ + δZ q − v

2
q − v

2
−(dZ + δZ)

))
,

all closed extensions are Fredholm, and given the index of one extension we know the index
of them all.

In particular we see that d+ δ will be essentially self-adjoint14 if and only if there are no
eigenvalues in (−1

2
, 1

2
). If we allow ourselves the freedom of scaling the metric gZ on the link

then we can scale away any non-zero eigenvalues in this interval. However the zero eigenvalue
corresponds to harmonic differential forms on Z of degree v

2
, and the dimension of this space

is topological. Thus d + δ is essentially self-adjoint for some conic metric if and only if v is
odd, or v is even and Z does not have cohomology in degree v

2
. These spaces are called Witt

spaces.
It is worth emphasizing that the wedge cotangent bundle is isomorphic to the usual cotan-

gent bundle, and canonically isomorphic over the interior of X̃. Thus studying d + δ as an

operator on wedge differential forms is equivalent, over X̃◦, to studying d + δ on the usual
differential forms. However as we have seen the behavior at the boundary is much nicer.

On a Witt space we can choose a metric for which d + δ is essentially self-adjoint. With
this domain we can talk about the index with respect to either the Gauss-Bonnet or the

13Recall that for any vector field V with dual one-form α, the operators eα of exterior multiplication by
α and iV of interior product with V satisfy id = eαiV + iV eα. Applying this to α = dx and V = ∂x yields
this decomposition near the boundary.

14A differential operator is essentially self-adjoint if it has a unique closed extension to an operator on L2

and that extension is self-adjoint.



AN INTRODUCTION TO INDEX THEORY ON SINGULAR SPACES 9

signature grading (after complexifying). The corresponding index theorems coincide with

the Atiyah-Patodi-Singer index theorems for X̃, as shown by Cheeger.
On a non-Witt space, we can choose a metric for which the only eigenvalue occurring

above is λ = 0. Thus every element in the maximal domain of d + δ has an asymptotic
expansion of the form

ω = x−v/2(α(ω) + dx ∧ β(ω)) + ω̃, with ω̃ ∈ Dmin(d+ δ), α(ω), β(ω) ∈ Hv/2(Z)

and closed domains correspond to subspaces of Hv/2(Z)⊕Hv/2(Z). If we want a domain that
is self-adjoint we can look at the symplectic pairing

Dmax(d+ δ)×Dmax(d+ δ) // R
(u, v) � // [u, v]d+δ = 〈(d+ δ)u, v〉L2 − 〈u, (d+ δ)v〉L2

known as the boundary pairing of d + δ. Note that, directly from the definition of adjoint
domain, given any closed extension (d + δ,D(d + δ)) its adjoint has domain equal to the
‘orthogonal complement’ with respect to the boundary pairing of D(d + δ). So self-adjoint
domains are precisely the Lagrangian subspaces of Dmax(d+ δ) with respect to this pairing.
In our simplified situation it is easy to compute the boundary pairing explicitly: Whenever
ω1, ω2 are in Dmax(d+ δ) we have15

[ω1, ω2]d+δ = 〈α(ω1), β(ω2)〉Hv/2(Z) − 〈β(ω1), α(ω2)〉Hv/2(Z).

Cheeger’s ideal boundary conditions16 consist of picking any subspace Va ⊆ Hv/2(Z), and
then setting

DVa(d+ δ) = {ω ∈ Dmax(d+ δ) : α(ω) ∈ Va, β(ω) ∈ V ⊥a }.

The kernel of d+δ with any such domain, restricted to form degree q, coincides with the de

Rham cohomology of X̃ with appropriate boundary conditions on d. The two extreme cases,
Va = {0} and Va = Hv/2(Z) have topological descriptions: they are intersection cohomology
with lower middle perversity and upper middle perversity, respectively17. We refer to a choice
of Va as a mezzoperversity as it corresponds to a cohomology theory ‘in between’ the two
middle perversity theories.

If we want a domain for the signature operator, we need to impose that these spaces are
compatible with the Hodge star. A self-dual mezzoperversity is a choice of Va such that

∗V ⊥a = Va,

the existence of a subspace with this property is equivalent to the vanishing of the signature
of Z. Any self-dual mezzo-perversity yields a Fredholm domain for the signature operator
and, surprisingly, the index is independent of the choice of self-dual mezzoperversity18.

15Note that Hv/2(Z) inherits an inner product from the L2-inner product on Z (from the metric gZ).
16Cheeger discussed de Rham cohomology with ideal boundary conditions in the presence of an isolated

conic singularity in [13].
17Since our space has only conic singularities, these can be described in terms of the relative and absolute

cohomology of X̃. For an introduction to intersection homology see [19] and for a de Rham description
see [1, §6.5].

18This was shown in [6] using the corresponding topological statement established by Banagl [10].
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2.2. Non-isolated conic singularities. Let’s take a look at the next simplest class of
singular spaces: wedge spaces, or spaces with non-isolated conical singularities. Analysis on
these spaces is in some ways very similar to that on spaces with isolated conic singularities.
However there are important differences, for example there will be closed extensions of elliptic
operators that are not Fredholm.

Geometrically19, the singular points of X̂ form a closed manifold Y and this manifold has

a ‘tubular neighborhood’, TY in X̂ that participates in a fiber bundle

C(Z)− TY −→ Y

with fiber the cone over a closed manifold Z.
Removing one of these neighborhoods from X̂ we end up with a smooth manifold with

boundary X̃, whose boundary has a fiber bundle

Z − ∂X̃ φY−−−→ Y.

A wedge metric on X̃ is one that near the boundary takes the form20

dx2 + x2gZ + φ∗gY

where gZ + φ∗gY is a submersion metric on X̃.
Let us start by assuming that the boundary fiber bundle is trivial: Y × Z. The scalar

Laplacian takes the form

−∂2
x − v

x
∂x + 1

x2
∆Z + ∆Y

and multiplying by x2 yields

−(x∂x)
2 − (v + 1)x∂x + ∆Z + x2∆Y .

If u ∈ Dmax(∆) and v = x2∆(u) then21

M(u)(ζ) ∈ L2({ξ = −v+1
2

)} × Z × Y ; dη dvolZ dvolY ) ∩ Hol({ξ + iη : ξ < −v+1
2
}),

M(v)(ζ) ∈ L2({ξ = 2− v+1
2
} × Z × Y ; dη dvolZ dvolY ) ∩ Hol({ξ + iη : ξ < 2− v+1

2
})

However

M(v)(ζ, y, z) = (−ζ2 − (v + 1)ζ + ∆Z)M(u)(ζ, y, z) + ∆YM(x2u)(ζ, y, z)

=⇒ M(u)(ζ, y, z) = (−ζ2 − (v + 1)ζ + ∆Z)−1(M(v)(ζ, z)−∆YM(x2u)(ζ, y, z))

only gives us a meromorphic continuation of M(u)(ζ, y, z) as a function of ζ valued in
L2(dz,H−2(dy)). We again get a distributional expansion of u by taking inverse Mellin
transform, with exponents coming from the spectrum of ∆Z , but with a loss of regularity in
the Y directions.

Explicitly, we are interested in those λj in the spectrum of ∆Z such that−ζ2−(v+1)ζ+λ =
0 has a solution22

ζj = −v+1
2

+ µj, with Reµj ∈ (0, 2).

19We are describing the structure of a Thom-Mather stratified space of depth two. See [20] for a discussion
of different types of stratified space.

20More generally this is what the leading term behavior of a wedge metric looks like; the analysis is
essentially the same for more general wedge metrics but slightly messier.

21We could conjugate by x(v+1)/2 to simplify the numbers involved as we did above.
22Let us assume for simplicity that all solutions have multiplicity one.
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An element u of the maximal domain of ∆ then has an expansion of the form

u ∼
∑

uj(y, z)x
−v+1

2
+µj + ũ

where ũ ∈ x2−L2(xv dx dz;H−2(dy)). A priori the coefficients uj(y, z) have regularity L2

in z and H−2 in y, however a Calderon interpolation argument23 shows that each uj has
regularity H−µj in y.

One instance of these distributional expansions is very well known. Suppose Z is a single

point so that X̃ is a manifold with boundary endowed with an incomplete Riemannian metric
of the form dx2 + gY (i.e., there is no singularity). The Laplacian is, near the boundary,
equal to −∂2

x + ∆Y . Multiplying by x2 yields

x2∆ = −x2∂x + x2∆Y = −(x∂x)
2 + x∂x + x2∆Y .

Arguing as above we see that elements of the maximal domain of ∆ have an asymptotic
expansion

u ∼
∑

uj(y)x−
1
2

+µj + ũ

where the −1
2
+µj are zeroes of −ζ2 +ζ, i.e., µj ∈ {1

2
, 3

2
}. Thus we can rewrite the asymptotic

expansion as

u ∼ u0(y) + xu1(y) + ũ.

Here u0(y), known as the Dirichlet data, has regularity H−1/2(Y ) and u1(y), known as the
Neumann data, has regularity H−3/2(Y ). Thus we recover the usual notion of Cauchy data.

In closing, let us point out that in the setting of non-isolated conic singularities the re-
placement for (1.1) is the space of edge vector fields24

Ve = {V ∈ C∞(X̃;TX̃) : V is tangent to the fibers of φY : ∂̃X −→ Y }.

The associated edge Sobolev spaces are, for k ∈ N, defined by

Hk
e (X̃; dvolg) = {u ∈ L2(X̃; dvolg) : V1 · · ·Vku ∈ L2(X̃; dvolg) for any Vi ∈ Ve}.

The domains of ∆ satisfy

x2H2
e (X̃; dvolg) ⊆ Dmin(∆) ⊆ Dmax(∆) ⊆ H2

e (X̃; dvolg).

Things are much more complicated if the boundary fiber bundle is not trivial. The Laplacians
∆Zy depend on which fiber we are on, and so does their spectrum. Making sense of an
asymptotic expansion where the exponents are varying is very delicate, particularly when
the exponents cross25.

23See [24, §7] for details.
24See [24] for the theory of edge differential and pseudodifferential operators.
25See [22] for a discussion of this using the notion of ‘trace bundle’.
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3. Third lecture: Dirac operators

3.1. Dirac operators on a wedge space. As in the last lecture, let X̂ be a wedge space,

i.e., a Thom-Mather stratified space of depth one, and let X̃ be its resolution. Thus X̃ is a
manifold with boundary and its boundary has a fiber bundle

Z − ∂X̃ φY−−−→ Y

with closed manifold base and fibers. We can recover X̂ from X̃ by collapsing the fibers of
φY .

A wedge metric on X̃ is a Riemannian metric of the form g = dx2+x2gZ+φ∗Y gY . The wedge

cotangent bundle wT ∗X̃ is the bundle constructed via the Serre-Swan theorem starting from
the cotangent vectors of bounded pointwise length, i.e., near the boundary locally spanned
by

dx, xdz, dy.

It is worth emphasizing anew that xdz, which vanishes on ∂X̃ as a section of T ∗X̃, does not

vanish on ∂X̃ as a section of the wedge cotangent bundle wT ∗X̃. Formally, we can restate

this as the observation that there is no section of wT ∗X̃ that multiplied by x is equal to xdz.

In the same vein, note that g defines a non-degenerate metric on wT ∗X̃.

A wedge Clifford module over X̃ consists of:

(1) a complex vector bundle E −→ X̃,
(2) a Hermitian bundle metric gE,
(3) a connection ∇E on E compatible with gE,

(4) an action of the complexified Clifford bundle of wT ∗X̃,

cl : Cl(wT ∗X̃, g) −→ End(E)

compatible with the metric and connection.

This information determines a wedge Dirac-type operator

ðw : C∞c (X̃◦;E)
∇E

−−−→ C∞c (X̃◦;T ∗X̃ ⊗ E)
cl−−→ C∞c (X̃◦;E),

where we have used that T ∗X̃ and wT ∗X̃ are canonically isomorphic over the interior of X̃.

As usual, one example is the de Rham operator26 d+ δ. Another example is, if X̃ is spin,
the spin Dirac operator.

The leading term of a wedge Dirac-type operator at ∂X̃ is xð|x=0 and can be identified
with

xð|x=0 = ð∂X̃/Y + v
2

cl (dx)

where ð∂X̃/Y is a vertical family of Dirac-type operators on the fibers of φY . We refer to
ð∂X̃/Y as the boundary family of ð. For the de Rham operator, d+ δ, ð∂X̃/Y is the family

y 7→
(
dZy + δZy N− v

2
N− v

2
−(dZy + δZy)

)
,

where N is the vertical number operator (it multiplies a form by its vertical degree).
When Y = {pt}, i.e., for isolated conic singularities, our analysis has shown that elements

of the maximal domain have an asymptotic expansion with exponents determined by the

26After complexifying the bundle of forms, since our convention is that Dirac-type operators act on sections
of complex vector bundles.
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eigenvalues of ð∂X̃ in the interval (−1
2
, 1

2
). For the general case we run into the problem that

the eigenvalues of ð∂X̃/Y
∣∣
Zy

depend on the point y ∈ Y. We will deal with this in two ways.

The first approach works well for the de Rham operator. In this case the zero eigenspace
for ð∂X̃/Y is topological, and if we scale away all of the other eigenvalues of (−1

2
, 1

2
) then we

may use the Mellin transform as we did before. We say that the metric g is ‘suitably scaled’
in this case. As before, elements of the maximal domain have an asymptotic expansion,
albeit distributional,

u ∈ Dmax(ðdR) =⇒ u ∼ x−v/2(α(u) + dx ∧ β(u)) + ũ,

with α(u), β(u) ∈ H−1/2(Y ;Hv/2(∂X̃/Y )), ũ ∈ x1−H−1(X̃; Λ∗wT ∗X̃).

If X̂ is Witt27, then the asymptotic expansion is just u ∼ ũ. It is not immediate that the
maximal and minimal domains coincide, however, since ũ is in principle not in L2. In [5],
we showed that Dmin(ðdR) = Dmax(ðdR) on Witt spaces by constructing pseudodifferential
parametrices locally over points in Y.28

If X̂ is not Witt, recall that Hv/2(∂X̃/Y ) is a flat subbundle over Y,29 and choose

W ⊆ Hv/2(∂X̃/Y ) any flat sub-bundle. We refer to W as a mezzo-perversity and to the
corresponding domain for ðdR,

DW (ðdR) = {u ∈ Dmax(ðdR) : α(u) ∈ H−1/2(Y ;W ) and β(u) ∈ H−1/2(Y ;W⊥)},

as the Cheeger ideal boundary conditions corresponding to W. (Two obvious choice for W

are the zero sub-bundle and the full bundle Hv/2(∂̃X/Y ).) In [6], we showed that for any W
this is a Fredholm domain for ðdR and defined a de Rham complex (i.e., a choice of domain
for d yielding a Hilbert complex in the sense of [11]) whose cohomology is isomorphic to the
Hodge cohomology of (ðdR,DW (ðdR)).

In order for DW (ðdR) to restrict to a domain for the signature operator (i.e., to be com-
patible with the grading induced by the Hodge star), we need to require W = ∗W⊥. There
may not be any such W, indeed a necessary condition is that the signature operators on the

fibers of ∂X̃
φY−−−→ Y have vanishing families index. If there is a flat bundle W satisfying this

property, we say that X̂ is a Cheeger space. Strikingly, the index of the signature operator
of a Cheeger space does not depend on the choice of W.

The second approach to choosing a domain is inspired by the analysis of the de Rham oper-
ator but works for any Dirac-type operator. Given a wedge Dirac-type operator ð, the index
of the boundary family ð∂X̃/Y is the obstruction to finding a family of smoothing operators

27Recall that X̂ is Witt if v is odd dimensional or v is even dimensional but Hv/2(Z) = 0.
28The construction in [5] was extended in [6], a global parametrix construction is carried out in [3].
29One way to see this is to identify this bundle with the bundle of de Rham cohomology spaces,

H
v/2
dR (∂X̃/Y ). A transition function for the fiber bundle ∂X̃

φY−−−→ Y induces a transition function on
this vector bundle via the pull-back of differential forms. This pull-back map is locally constant as de Rham
cohomology classes are homotopy invariant, yielding a flat structure on the bundle.
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Q ∈ Ψ−∞(∂X̃/Y ) such that ð∂X̃/Y +Q is invertible.30 We can extend Q from an operator de-

fined only on the boundary to a smoothing operator Q̃ acting on X̃ by using Mazzeo’s theory

of edge differential operators31 and then our objective is to study the operator ðQ̃ = ð + Q̃.
For ðQ̃ we define the ‘vertical APS domain’, by

DV APS(ðQ̃) = graph closure of x1/2H1
e (X̃;E) ∩ Dmax(ðQ̃).

The nomenclature is justified by thinking about asymptotic expansions; we know that the
domains are determined by the eigenspaces of boundary families between (−1

2
, 1

2
) and taking

this graph closure corresponds to taking the smallest domain where all of the contributions
from the negative eigenvalues vanish. 32

In [3, 4], we show that (ðQ̃,DV APS(ðQ̃)) is self-adjoint and Fredholm with compact resol-
vent. We construct its heat kernel and show that it has a short-time asymptotic expansion
of the form

Tr(e
−tð2

Q̃) ∼ t− dim X̃/2

∞∑
j=0

tj/2(aj + bj log t).

We carry out the heat equation proof of the index theorem and show that, when X̃ is
even-dimensional and E is Z2-graded,

ind(ðQ̃) =

∫
X̃

Â(X̃) Ch′(E) +

∫
Y

Â(Y )

(
−1

2
η̂(ð∂X̃/Y +Q) +

∫
Z

TÂ(∇con,∇cyl)

)
where Ch′(E) is the ‘twisted Chern character’, η̂ is the Bismut-Cheeger eta form, and

TÂ(∇con,∇cyl) is obtained by transgressing the Â-genus of two connections on Z × R+
s and

then restricting to s = 0, the two connections are the Levi-Civita connections of a conical
metric and a cylindrical metric.
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[5] Pierre Albin, Éric Leichtnam, Rafe Mazzeo, and Paolo Piazza, The signature package on Witt spaces,
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